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Fluctuations and correlations in the polarization patterns of a Kerr medium

Miguel Hoyuelos, Pere Colet, and Maxi San Miguel
Instituto Mediterfaneo de Estudios Avanzados, IMEDELCSIC-UIB), Campus Universitat llles Balears,
E-07071 Palma de Mallorca, Spain
(Received 22 December 1997

We study correlations among different components of the spectrum of the light intensity field close to a
pattern forming instability associated with the polarization of the light field. In particular we find strong
correlations between opposite wave vectors of critical wave number and anticorrelations of the zero wave
number and the critical one. These anticorrelations are a manifestation of nonlinear critical fluctuations of the
polarization of light[S1063-651X98)03406-0

PACS numbd(s): 05.40:+j, 47.54+r, 42.65.Sf

I. INTRODUCTION with the polarization of light, which is an additional degree
of freedom leading to polarization patterns.
It is well known that close to an instability point fluctua-  In this paper we analyze such correlations close to an

tions become large, as they do, for example, close to a critinstability leading to a polarization pattern. Specifically we
cal point in an equilibrium phase transition. In an instability cOnsider an optical cavity filled with a nonlinear optical ma-
leading to pattern formation, the spectrum of fluctuations be'_[enal, In th's case an isotropic Kerr “?ed'“.m- Th_e cavity Is
low the instability threshold is peaked around a wave numbePUmpPed with an external linearly polarized input fiélehich
associated with the spatial periodicity of the pattern that igve take to bex polarized. This situation is described by a
formed above threshold. In this way the spectrum of fluctuavectorial version of the scalar model of Lugiato and co-
tions is a noisy precursgf] that identifies a preferred wave Workers[6,7] in which a Turing optical instability was de-
number and anticipates the above-threshold pattern. Thigcribed. The generalization to account for the vectorial de-
situation has been studied in detail in experiments in fluiddree of freedom of light was described by Geddesl. [8].
dynamics[2] where thermal fluctuations are observed belowFor a self-defocusing medium no pattern-forming instability
the onset of thermal convection. The fluctuating power specoccurs when neglecting the vectorial character of the field
trum has been used to characterize the selected wave numiél. However, in the vector model a roftpolarized pattern
and for a quantitative measurement of the strength of therma@merges, beyond an instability, on top of polarized ho-
fluctuations. . S mogeneous backgrour#l]. We find two types of strong cor-

A basic wave-vector selection process is of linear naturgelations that can be physically understood in terms of indi-
and, for an isotropic system, determines the modulus of thgijdual four-wave-mixing processe$a) Among the wave
wave vector of fastest growth. This is reflected in a ring ofyectors with linearly selected wave number, a maximum cor-
maximum power in the below-threshold spectrum. The serelation between opposite vectors occurs. This is a linear
lection of a discrete set of wave vectors within this ring is aphenomenon that can be found outside the critical region of
nonlinear process in which the correlations among the wav@yctuations. It is related to symmetry breaking by the pump
vectors with same modulus play a definite role. The discretgield. (b) An anticorrelation is found between the zero wave
set of selected modes determine the pattern that is formegkctor of the spectrum of fluctuatioriassociated with the

above threshold. Such correlations among the linearly sey ; : ;
. -polarized componeptand the ring of linearly selected
lected wave vectors, which, to our knowledge, have not been P ponen 9 y

analyzed previously in fluid systems, have been considereff2ve vectorsassociated with thg-polarized component
recently [3] in pattern-forming nonlinear optical systems This anticorrelation is a manifestation of nonlinear critical
[4,5]. Correlations can be understood here in terms of a prof_Iuctuation:s and therefore only observed very close to thresh-
cess involving the simultaneous emission of twin photons. ipld. \P/1V6I alsrc]) st_udy;hese two ;ypes Ofl cprrelatl(ljns :;:bovkc‘e
addition, these systems present some important peculiaritit—f'%res old, showing that m?eed the cr?rre ations l:;]e ow thresh-
that make the study of these correlations particularly inter®'d anticipate properties found in the pattern that emerges
esting. First, the power spectrum of fluctuations below2POVe threshold. _ - . .
threshold is easily observed as the far-field intensity pattern, ©OUr results here are obtained within a semiclassical ap-
Second, the fluctuations have contributions of quantum oriProach in which sp(_ecmc fe(_nltures O,f quantum statistics are
gin (quantum noiseand the observed correlations can en-heglected. The obtained anticorrelations between the two po-
code specific features of quantum statistics. Third, patterrf”zat'_On components of the light field in the pattern-
here are spatial structures of a light field and light has 4°rmation process open the way to the search for quantum
vectorial character that very naturally leads to the study of'0iS€ aspects of these anticorrelatighg].
vectorial correlations. This vectorial character is associated Il. DESCRIPTION OF THE MODEL
The dynamics of the electric field inside an optical cavity
*World Wide Web address: http://www.imedea.uib.es/PhysDeptiwith a Kerr medium can be described, in the mean-field ap-
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proximation, by two equations for the independent compo-
nents of the scaled slowly varying amplitude of the field .
[811]']!

aEi . . 2 . 2
= —(1+in0)E.+iaVEL+Eq+ig[A|E.]

+(A+B)|E=|?]E., oY)

whereE.. are the right and left circularly polarized compo-

nents of the fieldE, is anx linearly polarized input field,
7=+1 (—1) corresponds to a self-focusirigelf-defocusinyg - -
medium, @ is the cavity detuninga represents the strength of : ., (c) (d)
diffraction, andV? is the transverse LaplaciaA. andB are olt
parameters related to the components of the susceptibility * i w4
tensor y. We consider an isotropic medium for which i LR T ‘ A
+B/2=1 (B=<2). The circularly polarized components of | #

the field are expressed in terms of thandy linearly po- iyl 4
larized componentk, andE, as

E.=(E.+iE,)/\2. ) gL e

Equation(1) has anx-polarized homogeneous symmetric  FIG. 1. Near- and far-field intensities below threshéthe far-
solution in whichEg, =E;_=Eg, field intensities correspond to the squared absolute value of the
Fourier transform of the electrical fietd(a) f(-polarized near-field
intensity I (X) =|Ex(X)|2, (b) x-polarized far-field intensityl (k)
wherel = |E{?. It is well known that the homogeneous so- =|Ex(K)|? [the inset ShOWS*Ax(lz) after substracting the homoge-
lution (3) presents bistability ford>+/3. We will restrict neous mode contributign(c) y-polarized near-field intensity,(x),
ourselves here to the nonbistable regihe \/§ We note and(d) y-polarized far-field intensityy(IZ). The parameters ailg
that Eq.(1) has also an asymmetric solutiof(, #E,_).  =0.98¢ (below thresholyf a=1, §=1, »=—1, ¢’=10"°, and
We will not consider the asymmetric solution in this work B=3/2.1,(x) andly(i) were averaged over 100 samples separated
because it is only relevant for high values of the input field,At=0.02 to reduce noisey(lZ) was averaged over 40 000 samples
above the first instability threshold of the symmetric solutionseparated\t=0.5.

[11]. Here we are concerned with correlations close to this

instability threshold. The instability threshold is located &{=1/B and the insta-
To analyze the stability of the homogeneous steady statgility occurs at a critical wave numbé, ,

Es, as well as the effect of the fluctuations in this state, we

Eo=EJ{1-in(2ls—06)], )

consider perturbations of the form ke=V(6+1-2B)la for 6>2/B—1,
E.=Est+ ¢ 4
==Est i @ k=0 for 9<2/B—1. 7)

in Eq. (1). The linear stability analysi§8,11] shows that .
there are two modes that can become unstable: a symmettior #>2/B—1 a stationary striped pattern emerges inythe

mode ©) with ¢, =¢_ and an asymmetric modé\] with  polarized component, while thecomponent remains homo-
=~ . Inthe self-focusing case the mode that becomegeneous. Above this instability we find, therefore, for the
unstable is the symmetric one. As the unstable mode has thgta| field, an elliptically polarized pattern with spatially pe-
same polarization as the input field, this situation can bgjodic ellipticity. From an experimental point of view an in-
described with a scalar modgb,7]. In two-transverse- teresting aspect of this situation is that it is possible to sepa-
dimensional systems this instability leads to an hexagonalgte the finite-wave-number component of the figdttern

stationary pattern. Here we are interested in the instability ofrom the homogeneous part by simply using a polarizer.
the asymmetric mode that occurs in the self-defocusing case.

This instability leads to the growth of the component of the
field orthogonally polarized to the driving fie]@,11]. In the
linear regime one finds In order to study correlations below the threshold of pat-
E.—E.+y ®) tern fgrmation we need to introduce sources of noise in our
£ =s— description. We follow here the approach already used to
study fluctuations in the one-dimensional scalar version of
this problem[12]: In a semiclassical description of the prob-
E,= 2Es, lem we can represent different sources of fluctuations by

adding Gaussian white noi@t(i,t) with zero mean and
E, = —i\/iz//. (6) correlations to the right-hand side of E@),

IIl. CORRELATIONS BELOW THRESHOLD

and
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(a)

o (rad)

FIG. 2. CorrelatiorC,, [see Eq(9)] (a) as a function ok, and
k, for 1,=0.98¢, (b) calculated along the ring=k, as a function
of a for 1,=0.98¢, and(c) versusa for 1;=0.9995. The rest of
the parameters are the same as in Fig. 1. For these pararkgters
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the rest of the modes and, as a consequence, is singled out in
the power spectrum of the field. Because a pattern is not yet
formed, the excited wave vectors have random directions. In
the far field there is a ring of higher intensity with a radius

equal tok.. In Fig. 1 we show the far-field intensitie§(IZ)
and Iy(IZ), corresponding to the spatial power spectrum of

the two componentEX(i) and Ey(i) of the field distribu-
tion, slightly below the threshold of instability of mode
We also show a snapshot of the spatial configurations of the
two components of the electric field intensifgear field
[13]. The far field of thex-polarized component has a pre-
dominant peak at zero wave number corresponding to the
homogeneous componentlé;‘(()Z). To show the fluctuations
around this homogeneous state we have plotted in the inset
in Fig. 1(b) the spatial power spectrum of the field distribu-
tion after substracting the homogeneous component of
Ex(i). The y-polarized component of the far field displays
the characteristic ring shown in Fig(d). The near field of
thex component shows a noisy homogeneous patternyThe
component in the near field is also homogeneous if a long
time average is taken. A configuration at a fixed time shows
a disordered structure. This structure reveals a characteristic
less-stable wave numbkg when averaged, for noise reduc-
tion, over a short time interval, as done in Figc)l

We next analyze the correlations among the wave vectors
in the ring of they-polarized far field. We fix one of these
vectors by choosing the poikt = (k.,0) in the plot of Fig. 1
and calculate its correlation with any other wave vector. This
is given by the correlation function

C1(K)=(8l (k") 81 (K)), (9)

where 81,(K) is the fluctuation of the intensitygl(K)
=Iy(I2)—<Iy(IZ)>, Aand Iy(IZ)=|Ey(IZ)|2 (equivalent expre-
sions hold for thex component Angular brackets stand for
time average.

In Fig. 2@ we plot C,(k) for a distance to threshold
1,=0.98¢ (same parameters as in Figl. We can see a

self-correlation akk=k’ and another peak &= —k’. We
also calculate the correlatidd; along the ring as a function

of the anglea betweenk andk’, taking |k|=|k’|=k.. In
this case we can select different vectétson the ring, cal-

=0.82. The results were obtained after averaging over 40 oogulate the correlatio€, for each one of these vectors, and

samples separatekit=0.5.
(GEXDE (X 1)) =2€25;8(x—X") 8(t—1'),

(DX 1)) =0, ®)
where the subindicesj stand for the circularly polarized
componentst.

Slightly below threshold noise excites fluctuations of all
wave numbers. However, the wave vedtgr which is going

obtain an average. In Fig(l® we plotC, versusa and the
correlation ate= 7 is clearly displayed. As we get closer to
the threshold we can expect an enhancement of the correla-
tion since fluctuations become larger. This is indeed the case
as we can see in Fig(®, where we ploC, as a function of

« for a distance to threshold=0.999¢.

Since we are considering correlations below threshold, we
may think that the system is not far from the homogeneous
solution and fluctuations could be described within a linear
analysis. If we linearize Eq(1) around the homogeneous

solution (3), we find for thex andy components of the

to become unstable at threshold, is much less damped thdluctuationssE, and 5E,
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05EX . . 2 . *
ot =—[1+in(6-2lg)—iaV ]5EX+|772IS(5EX+5EX)
+ gx()zlt)y
d0E <

— L= —[1+in(6-215)—iaV?]6E,+inl B(SE} — 5E,)

+E£,(x,1), (10)

where SE,=E,—2E; and oE,=E,. These equations . . . .

show thatsE, and SE, are linearly uncoupled. The correla- 0.0 0.5 1.0 1.5 2.0 2.5
tions in the far field o, described above can be understood k
by considering Eq.(10) for the 9 component in Fourier
space,
SE(K) 0 O (Ib)
d .
JoEK) _ —[1+in(6—21)+iak?]5E,(K)
ot -5l ]
+i 7l B[ SE (—k) — SEy(K) ]+ £y(K,1). o
(11) =
Equation(11) shows a linear correlation between wave vec- —15¢ ]
torsk and —k as found in Figs. @) and 2b). It is important
to understand the origin of such correlation: Mathematically, =201 1

it comes from the term 7l B[ SEX (— k) — SE,(K)], which '

breaks the phase invariance of tyhe equatioryl for the complex 0.0 0.5 1.0 11;) 2.0 2.5

amplitude 6E,. This symmetry-breaking term is propor-

tional tol ¢, which is nonzero because of the pump fiElgl FIG. 3. CorrelatiorC,(k) [see Eq(12)]. The parameters are the
The origin of the correlations in the far field &, is then  same as in Fig. 1 except fors: (a) 15=0.999¢ and (b) I
traced back to symmetry breaking caused by the pump fields 1.0 (above threshold The results were obtained after averag-
which also breaks the global phase symmetry of @.In  ing over 10 000 samples separatet=0.5.

the absence of this term the linear equations are invariant

under rotation of the wave vectérand different wave vec- C,(k) does not take into account the angIeIZoibut it only
tors are linearly decoupled. The symmetry-breaking teryepends on its modulus 81,(0) represents the fluctuations
still preserves a discrete symmetry: It is easily seen from qu]c the homogeneous part of tﬁecomponent of the field.

(11 that I (k) andl,(—k) satisfy the same equation. This 51,(k) is the average over orientations & of the

explains the numerical findin€@,(a)=C;(a+ ) in Figs. . X . o
2(b) and 2c). Upon sufficient averagingC,(a)=0 for a flugtuatlon;s_ of 1y |n- Fourier space.. Specifically,
+0 anda % . taking k=(k cos¢ksing), we define 5l (k)

=(1/27) [57 5 y(k cosgksin ¢)de. 6l,(k) at k=k corre-

At a microscopic level the correlation betwe&nand . A Y
ponds to the fluctuations of tlyepolarized precursor of the

—Kk can be interpreted as a manifestation of the individual® it it leulate. for th i in Fi
four-wave-mixing process in which there is simultaneou attern. 1f we caiculate. for the same parameters as in Fig.

H H Cc
emission of two photons that conserve transverse momer: Where the distance to thresholdlis=0.98, we do not
tum. In this interoretation th w0 photons sreolarized obtain any anticorrelation. From our analysis of E(K)),
um. S Interpretation these two photons grpolarize we know that if these anticorrelations exist they have to

and originate in the annihilation of two-polarized photons  originate in nonlinear terms. Nonlinearities become impor-

of the pump field that have zero transverse wave number. Agnt close to the critical point where fluctuations are en-

in the four-wave-mixing process, the number of photons isyanced. In Fig. @) we plotC,(k) in a situation much closer

conserved(which reflects conservation of energy since all, threshold) ;= 0.999¢ . For these parameters we enter the
L. L . s

the photons have the same frequendyis then natural t0  (yitical nonlinear regime and, in agreement with our previous

expect an anticorrelation between the homerneouﬁaasoning we now find an anticorrelationkat k

~ . . ~ . ! c-

x-polarized component of the field and thepolarized com- In summary, below the threshold for pattern formation

ponent. However, Eq$10) do not account for this anticor- here js a linear correlation between the fluctuationk afd

relation sincesE, and Sk, are uncoupled. - ~ . ) .
In order to investigate this possible anticorrelation in K In the y-polarized far .f'eld' The.-?e fluctu_at|ons and.c_or—
relations become larger in the critical region. In addition,

which an increase df, should be accompanied by a decreasethere is a critical nonlinear anticorrelation between the fluc
of I, we calculate a second correlation function

tuations of thex- and y-polarized fields that has the same
Ca(k)=(1 (k) 14(0)). (120  physical origin.
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FIG. 4. Near- and far-field intensities above thresh@l1 ,(X)
(near field, (b) IX(IZ) (far field) (in the inset the homogeneous mode 47
was substracted to show the contribution to the spectrum of the
small-amplitude modulation (c) 1,(x) (near field, and (d) 1,(k) <
(far field). The parameters are the same as in Fig. 1, exceftfor 0
=1.09¢. Here it is not necessary to take an average of the near-
field intensities over a short time since the amplitude of the pattern 0 1 2 3 4 5 6
is much larger than the noise amplitude. The far-field intensities are a (rad)
also clearly seen without averaging. The ranges of values for the
intensity in the near field aré,(x)<[1.326,1.356 and I(x)
€[0,0.113.

FIG. 5. CorrelationC; above thresholdsee Eq.(9)] (a) as a
function ofk, andk, and(b) calculated along the ring=k;. The
parameters are the same as in Fig. 1, excepl forl.035. The

IV. CORRELATIONS ABOVE THRESHOLD results were obtained after averaging over 3000 samples separated
' At=0.5.

The results discussed in the preceding section are for
pumping intensity below the threshold for pattern formation. i -
We now consider the situation above this threshold. wek=0 since they component of the near field,(x) has a
show that the same types of correlations are found. Thi¥anishing mean value. _
shows that correlations among the fluctuations below thresh- AS in Sec. lll, we can calculate the correlati@h be-
old anticipate the features to be observed in the cohererttveendl (k) anddl (k) in the whole plane or along a ring

pattern that emerges above threshold. There are two addif radiusk.. We choose the vectdr’ corresponding to one

tional reasons for this above-threshold analysis. First, eXPeriss tha dots inly(IZ), as shown in Fig. 4. Both results are

mental measurements of far-field correlations have alreadg g . o .
. S . hown in Fig. 5 with results similar to those obtained for the
been done above threshold in pattern formation in nonlinear

optical systemg¢5]. Second, as already mentioned, the cor-"35€ below _thresb Olg' In Fig(® we see a Qeak §howmg the
relations studied here between the two polarization compoself-correlation ak=k’ and another peak &t=—k'. In Fig.
nents of the field in the pattern formation process open the(®) we plotC, as a function of the angle in the ring of
way to search for quantum noise aspects of these correlg@diusk. and we find, as expected, a strong correlation at
tions. Quantum noise aspects close to an instability hav&= 7 The main difference between Figs. 2 and 5 is that we

been studied either below or above the instability threshold'OW have a coherent pattern so that fluctuations in the ring of
[3,14). radiusk, are largely suppressed in comparison to the mean

value ofl, in the two peaks of the power spectrum. These

Above threshold- a stnpeq structure N developed inythe peaks characterize the pattern with a well-defined orientation
component of the fieldsee Fig. 4. In thex component also (see Fig. 1

a stripedAstructure appears, produced by nonlinear couplings We have also calculated the anticorrelation betweé)
with the y component, but of smaller amplitude; the main and1,(k.) above threshold. In this case we calcul@gin
contribution to the far field of thex component is still the the direction determined by the two bright dots in the far
homogeneous mode. The far field of thecomponent has field of the y-polarized intensityl y(IZ) (see Fig. 4 The re-
two dots that indicate the arbitrary direction chosen by thesult, shown in Fig. &), displays the anticipated strong anti-
system to develop the stripes. It does not have any power @brrelation.
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