
PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Fluctuations and correlations in the polarization patterns of a Kerr medium

Miguel Hoyuelos, Pere Colet, and Maxi San Miguel
Instituto Mediterráneo de Estudios Avanzados, IMEDEA* (CSIC-UIB), Campus Universitat Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 22 December 1997!

We study correlations among different components of the spectrum of the light intensity field close to a
pattern forming instability associated with the polarization of the light field. In particular we find strong
correlations between opposite wave vectors of critical wave number and anticorrelations of the zero wave
number and the critical one. These anticorrelations are a manifestation of nonlinear critical fluctuations of the
polarization of light.@S1063-651X~98!03406-0#

PACS number~s!: 05.40.1j, 47.54.1r, 42.65.Sf
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I. INTRODUCTION

It is well known that close to an instability point fluctua
tions become large, as they do, for example, close to a c
cal point in an equilibrium phase transition. In an instabil
leading to pattern formation, the spectrum of fluctuations
low the instability threshold is peaked around a wave num
associated with the spatial periodicity of the pattern tha
formed above threshold. In this way the spectrum of fluct
tions is a noisy precursor@1# that identifies a preferred wav
number and anticipates the above-threshold pattern.
situation has been studied in detail in experiments in fl
dynamics@2# where thermal fluctuations are observed bel
the onset of thermal convection. The fluctuating power sp
trum has been used to characterize the selected wave nu
and for a quantitative measurement of the strength of ther
fluctuations.

A basic wave-vector selection process is of linear nat
and, for an isotropic system, determines the modulus of
wave vector of fastest growth. This is reflected in a ring
maximum power in the below-threshold spectrum. The
lection of a discrete set of wave vectors within this ring is
nonlinear process in which the correlations among the w
vectors with same modulus play a definite role. The discr
set of selected modes determine the pattern that is for
above threshold. Such correlations among the linearly
lected wave vectors, which, to our knowledge, have not b
analyzed previously in fluid systems, have been conside
recently @3# in pattern-forming nonlinear optical system
@4,5#. Correlations can be understood here in terms of a p
cess involving the simultaneous emission of twin photons
addition, these systems present some important peculiar
that make the study of these correlations particularly in
esting. First, the power spectrum of fluctuations bel
threshold is easily observed as the far-field intensity patt
Second, the fluctuations have contributions of quantum
gin ~quantum noise! and the observed correlations can e
code specific features of quantum statistics. Third, patte
here are spatial structures of a light field and light ha
vectorial character that very naturally leads to the study
vectorial correlations. This vectorial character is associa

*World Wide Web address: http://www.imedea.uib.es/PhysDe
PRE 581063-651X/98/58~1!/74~6!/$15.00
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with the polarization of light, which is an additional degre
of freedom leading to polarization patterns.

In this paper we analyze such correlations close to
instability leading to a polarization pattern. Specifically w
consider an optical cavity filled with a nonlinear optical m
terial, in this case an isotropic Kerr medium. The cavity
pumped with an external linearly polarized input field~which
we take to bex̂ polarized!. This situation is described by
vectorial version of the scalar model of Lugiato and c
workers @6,7# in which a Turing optical instability was de
scribed. The generalization to account for the vectorial
gree of freedom of light was described by Geddeset al. @8#.
For a self-defocusing medium no pattern-forming instabil
occurs when neglecting the vectorial character of the fi
@9#. However, in the vector model a rollŷ-polarized pattern
emerges, beyond an instability, on top of anx̂-polarized ho-
mogeneous background@8#. We find two types of strong cor
relations that can be physically understood in terms of in
vidual four-wave-mixing processes.~a! Among the wave
vectors with linearly selected wave number, a maximum c
relation between opposite vectors occurs. This is a lin
phenomenon that can be found outside the critical region
fluctuations. It is related to symmetry breaking by the pum
field. ~b! An anticorrelation is found between the zero wa
vector of the spectrum of fluctuations~associated with the
x̂-polarized component! and the ring of linearly selected
wave vectors~associated with theŷ-polarized component!.
This anticorrelation is a manifestation of nonlinear critic
fluctuations and therefore only observed very close to thre
old. We also study these two types of correlations abo
threshold, showing that indeed the correlations below thre
old anticipate properties found in the pattern that emer
above threshold.

Our results here are obtained within a semiclassical
proach in which specific features of quantum statistics
neglected. The obtained anticorrelations between the two
larization components of the light field in the patter
formation process open the way to the search for quan
noise aspects of these anticorrelations@10#.

II. DESCRIPTION OF THE MODEL

The dynamics of the electric field inside an optical cav
with a Kerr medium can be described, in the mean-fieldt/
74 © 1998 The American Physical Society
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PRE 58 75FLUCTUATIONS AND CORRELATIONS IN THE . . .
proximation, by two equations for the independent com
nents of the scaled slowly varying amplitude of the fie
@8,11#,

]E6

]t
52~11 ihu!E61 ia¹2E61E01 ih@AuE6u2

1~A1B!uE7u2#E6 , ~1!

whereE6 are the right and left circularly polarized comp
nents of the field,E0 is an x̂ linearly polarized input field,
h511 ~21! corresponds to a self-focusing~self-defocusing!
medium,u is the cavity detuning,a represents the strength o
diffraction, and¹2 is the transverse Laplacian.A andB are
parameters related to the components of the susceptib
tensor x. We consider an isotropic medium for whichA
1B/251 (B<2). The circularly polarized components o
the field are expressed in terms of thex̂ and ŷ linearly po-
larized componentsEx andEy as

E65~Ex6 iEy!/A2. ~2!

Equation~1! has anx̂-polarized homogeneous symmetr
solution in whichEs15Es25Es ,

E05Es@12 ih~2I s2u!#, ~3!

whereI s5uEsu2. It is well known that the homogeneous s
lution ~3! presents bistability foru.A3. We will restrict
ourselves here to the nonbistable regimeu,A3. We note
that Eq. ~1! has also an asymmetric solution (Es1ÞEs2).
We will not consider the asymmetric solution in this wo
because it is only relevant for high values of the input fie
above the first instability threshold of the symmetric soluti
@11#. Here we are concerned with correlations close to t
instability threshold.

To analyze the stability of the homogeneous steady s
Es , as well as the effect of the fluctuations in this state,
consider perturbations of the form

E65Es1c6 ~4!

in Eq. ~1!. The linear stability analysis@8,11# shows that
there are two modes that can become unstable: a symm
mode (S) with c15c2 and an asymmetric mode (A) with
c152c2 . In the self-focusing case the mode that becom
unstable is the symmetric one. As the unstable mode has
same polarization as the input field, this situation can
described with a scalar model@6,7#. In two-transverse-
dimensional systems this instability leads to an hexago
stationary pattern. Here we are interested in the instability
the asymmetric mode that occurs in the self-defocusing c
This instability leads to the growth of the component of t
field orthogonally polarized to the driving field@8,11#. In the
linear regime one finds

E65Es6c ~5!

and

Ex5A2Es ,

Ey52 iA2c. ~6!
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The instability threshold is located atI s
c51/B and the insta-

bility occurs at a critical wave numberkc ,

kc5A~u1122/B!/a for u.2/B21,

kc50 for u<2/B21. ~7!

For u.2/B21 a stationary striped pattern emerges in theŷ-
polarized component, while thex̂ component remains homo
geneous. Above this instability we find, therefore, for t
total field, an elliptically polarized pattern with spatially pe
riodic ellipticity. From an experimental point of view an in
teresting aspect of this situation is that it is possible to se
rate the finite-wave-number component of the field~pattern!
from the homogeneous part by simply using a polarizer.

III. CORRELATIONS BELOW THRESHOLD

In order to study correlations below the threshold of p
tern formation we need to introduce sources of noise in
description. We follow here the approach already used
study fluctuations in the one-dimensional scalar version
this problem@12#: In a semiclassical description of the pro
lem we can represent different sources of fluctuations
adding Gaussian white noisej6(xW ,t) with zero mean and
correlations to the right-hand side of Eq.~1!,

FIG. 1. Near- and far-field intensities below threshold~the far-
field intensities correspond to the squared absolute value of

Fourier transform of the electrical field!: ~a! x̂-polarized near-field

intensity I x(xW )5uEx(xW )u2, ~b! x̂-polarized far-field intensityI x(kW )

5uEx(kW )u2 @the inset showsI x(kW ) after substracting the homoge

neous mode contribution#, ~c! ŷ-polarized near-field intensityI y(xW ),

and ~d! ŷ-polarized far-field intensityI y(kW ). The parameters areI s

50.98I s
c ~below threshold!, a51, u51, h521, e251025, and

B53/2. I x(xW ) andI y(xW ) were averaged over 100 samples separa

Dt50.02 to reduce noise.I y(kW ) was averaged over 40 000 sampl
separatedDt50.5.
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^j i~xW ,t !j j* ~xW8,t8!&52e2d i j d~xW2xW8!d~ t2t8!,

^j i~xW ,t !j j~xW8,t8!&50, ~8!

where the subindicesi , j stand for the circularly polarized
components6.

Slightly below threshold noise excites fluctuations of
wave numbers. However, the wave vectorkc , which is going
to become unstable at threshold, is much less damped

FIG. 2. CorrelationC1, @see Eq.~9!# ~a! as a function ofkx and
ky for I s50.98I s

c , ~b! calculated along the ringk5kc as a function
of a for I s50.98I s

c , and~c! versusa for I s50.999I s
c . The rest of

the parameters are the same as in Fig. 1. For these parametekc

50.82. The results were obtained after averaging over 40
samples separatedDt50.5.
l

an

the rest of the modes and, as a consequence, is singled o
the power spectrum of the field. Because a pattern is not
formed, the excited wave vectors have random directions
the far field there is a ring of higher intensity with a radi

equal tokc . In Fig. 1 we show the far-field intensitiesI x(kW )

and I y(kW ), corresponding to the spatial power spectrum

the two componentsEx(xW ) and Ey(xW ) of the field distribu-
tion, slightly below the threshold of instability of modeA.
We also show a snapshot of the spatial configurations of
two components of the electric field intensity~near field!
@13#. The far field of thex̂-polarized component has a pre
dominant peak at zero wave number corresponding to
homogeneous component ofEx(xW ). To show the fluctuations
around this homogeneous state we have plotted in the i
in Fig. 1~b! the spatial power spectrum of the field distrib
tion after substracting the homogeneous component
Ex(xW ). The ŷ-polarized component of the far field display
the characteristic ring shown in Fig. 1~d!. The near field of
the x̂ component shows a noisy homogeneous pattern. Thŷ
component in the near field is also homogeneous if a lo
time average is taken. A configuration at a fixed time sho
a disordered structure. This structure reveals a character
less-stable wave numberkc when averaged, for noise reduc
tion, over a short time interval, as done in Fig. 1~c!.

We next analyze the correlations among the wave vec
in the ring of theŷ-polarized far field. We fix one of thes
vectors by choosing the pointkW85(kc,0) in the plot of Fig. 1
and calculate its correlation with any other wave vector. T
is given by the correlation function

C1~kW !5^dI y~kW8!dI y~kW !&, ~9!

where dI y(kW ) is the fluctuation of the intensity,dI y(kW )
5I y(kW )2^I y(kW )&, and I y(kW )5uEy(kW )u2 ~equivalent expre-
sions hold for thex̂ component!. Angular brackets stand fo
time average.

In Fig. 2~a! we plot C1(kW ) for a distance to threshold
I s50.98I s

c ~same parameters as in Fig. 1!. We can see a

self-correlation atkW5kW8 and another peak atkW52kW8. We
also calculate the correlationC1 along the ring as a function
of the anglea betweenkW and kW8, taking ukW u5ukW8u5kc . In
this case we can select different vectorskW8 on the ring, cal-
culate the correlationC1 for each one of these vectors, an
obtain an average. In Fig. 2~b! we plot C1 versusa and the
correlation ata5p is clearly displayed. As we get closer t
the threshold we can expect an enhancement of the cor
tion since fluctuations become larger. This is indeed the c
as we can see in Fig. 2~c!, where we plotC1 as a function of
a for a distance to thresholdI s50.999I s

c .
Since we are considering correlations below threshold,

may think that the system is not far from the homogene
solution and fluctuations could be described within a line
analysis. If we linearize Eq.~1! around the homogeneou
solution ~3!, we find for the x̂ and ŷ components of the
fluctuationsdEx anddEy

0
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]dEx

]t
52@11 ih~u22I s!2 ia¹2#dEx1 ih2I s~dEx1dEx* !

1jx~xW ,t !,

]dEy

]t
52@11 ih~u22I s!2 ia¹2#dEy1 ihI sB~dEy* 2dEy!

1jy~xW ,t !, ~10!

where dEx5Ex2A2Es and dEy5Ey . These equations
show thatdEx anddEy are linearly uncoupled. The correla
tions in the far field ofEy described above can be understo
by considering Eq.~10! for the ŷ component in Fourier
space,

]dEy~kW !

]t
52@11 ih~u22I s!1 iak2#dEy~kW !

1 ihI sB@dEy* ~2kW !2dEy~kW !#1jy~kW ,t !.

~11!

Equation~11! shows a linear correlation between wave ve
torskW and2kW as found in Figs. 2~a! and 2~b!. It is important
to understand the origin of such correlation: Mathematica
it comes from the termihI sB@dEy* (2kW )2dEy(kW )#, which
breaks the phase invariance of the equation for the com
amplitude dEy . This symmetry-breaking term is propo
tional to I s , which is nonzero because of the pump fieldE0.
The origin of the correlations in the far field ofEy is then
traced back to symmetry breaking caused by the pump fi
which also breaks the global phase symmetry of Eq.~1!. In
the absence of this term the linear equations are invar
under rotation of the wave vectorkW and different wave vec-
tors are linearly decoupled. The symmetry-breaking te
still preserves a discrete symmetry: It is easily seen from
~11! that I y(kW ) and I y(2kW ) satisfy the same equation. Th
explains the numerical findingC1(a).C1(a1p) in Figs.
2~b! and 2~c!. Upon sufficient averaging,C1(a)50 for a
Þ0 andaÞp.

At a microscopic level the correlation betweenkW and
2kW can be interpreted as a manifestation of the individ
four-wave-mixing process in which there is simultaneo
emission of two photons that conserve transverse mom
tum. In this interpretation these two photons areŷ polarized
and originate in the annihilation of twox̂-polarized photons
of the pump field that have zero transverse wave number
in the four-wave-mixing process, the number of photons
conserved~which reflects conservation of energy since
the photons have the same frequency!; it is then natural to
expect an anticorrelation between the homogene
x̂-polarized component of the field and theŷ-polarized com-
ponent. However, Eqs.~10! do not account for this anticor
relation sincedEx anddEy are uncoupled.

In order to investigate this possible anticorrelation
which an increase ofI y should be accompanied by a decrea
of I x , we calculate a second correlation function

C2~k!5^dI y~k!dI x~0!&. ~12!
-
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C2(k) does not take into account the angle ofkW , but it only
depends on its modulusk. dI x(0) represents the fluctuation
of the homogeneous part of thex̂ component of the field.
dI y(k) is the average over orientations ofkW of the
fluctuations of I y in Fourier space. Specifically
taking kW5(k cosf,k sinf), we define dI y(k)
5(1/2p)*0

2pdI y(k cosf,k sinf)df. dI y(k) at k5kc corre-

sponds to the fluctuations of theŷ-polarized precursor of the
pattern. If we calculateC2 for the same parameters as in Fi
1, where the distance to threshold isI s50.98I s

c , we do not
obtain any anticorrelation. From our analysis of Eqs.~10!,
we know that if these anticorrelations exist they have
originate in nonlinear terms. Nonlinearities become imp
tant close to the critical point where fluctuations are e
hanced. In Fig. 3~a! we plotC2(k) in a situation much close
to threshold,I s50.999I s

c . For these parameters we enter t
critical nonlinear regime and, in agreement with our previo
reasoning, we now find an anticorrelation atk5kc .

In summary, below the threshold for pattern formati
there is a linear correlation between the fluctuations ofkW and
2kW in the ŷ-polarized far field. These fluctuations and co
relations become larger in the critical region. In additio
there is a critical nonlinear anticorrelation between the fl
tuations of thex̂- and ŷ-polarized fields that has the sam
physical origin.

FIG. 3. CorrelationC2(k) @see Eq.~12!#. The parameters are th
same as in Fig. 1 except forI s : ~a! I s50.999I s

c and ~b! I s

51.05I s
c ~above threshold!. The results were obtained after avera

ing over 10 000 samples separatedDt50.5.
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IV. CORRELATIONS ABOVE THRESHOLD

The results discussed in the preceding section are
pumping intensity below the threshold for pattern formatio
We now consider the situation above this threshold.
show that the same types of correlations are found. T
shows that correlations among the fluctuations below thre
old anticipate the features to be observed in the cohe
pattern that emerges above threshold. There are two a
tional reasons for this above-threshold analysis. First, exp
mental measurements of far-field correlations have alre
been done above threshold in pattern formation in nonlin
optical systems@5#. Second, as already mentioned, the c
relations studied here between the two polarization com
nents of the field in the pattern formation process open
way to search for quantum noise aspects of these cor
tions. Quantum noise aspects close to an instability h
been studied either below or above the instability thresh
@3,14#.

Above threshold a striped structure is developed in thŷ

component of the field~see Fig. 4!. In the x̂ component also
a striped structure appears, produced by nonlinear coupl
with the ŷ component, but of smaller amplitude; the ma
contribution to the far field of thex̂ component is still the
homogeneous mode. The far field of theŷ component has
two dots that indicate the arbitrary direction chosen by
system to develop the stripes. It does not have any powe

FIG. 4. Near- and far-field intensities above threshold:~a! I x(xW )

~near field!, ~b! I x(kW ) ~far field! ~in the inset the homogeneous mod
was substracted to show the contribution to the spectrum of

small-amplitude modulation!, ~c! I y(xW ) ~near field!, and ~d! I y(kW )
~far field!. The parameters are the same as in Fig. 1, except foI s

51.05I s
c . Here it is not necessary to take an average of the n

field intensities over a short time since the amplitude of the pat
is much larger than the noise amplitude. The far-field intensities
also clearly seen without averaging. The ranges of values for

intensity in the near field areI x(xW )P@1.326,1.356# and I y(xW )
P@0,0.113#.
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k50 since they component of the near fieldEy(xW ) has a
vanishing mean value.

As in Sec. III, we can calculate the correlationC1 be-

tweendI y(kW8) anddI y(kW ) in the whole plane or along a ring

of radiuskc . We choose the vectorkW8 corresponding to one

of the dots inI y(kW ), as shown in Fig. 4. Both results ar
shown in Fig. 5 with results similar to those obtained for t
case below threshold. In Fig. 5~a! we see a peak showing th
self-correlation atkW5kW8 and another peak atkW52kW8. In Fig.
5~b! we plot C1 as a function of the anglea in the ring of
radius kc and we find, as expected, a strong correlation
a5p. The main difference between Figs. 2 and 5 is that
now have a coherent pattern so that fluctuations in the rin
radiuskc are largely suppressed in comparison to the m
value of I y in the two peaks of the power spectrum. The
peaks characterize the pattern with a well-defined orienta
~see Fig. 1!.

We have also calculated the anticorrelation betweenI x(0)
and I y(kc) above threshold. In this case we calculateC2 in
the direction determined by the two bright dots in the
field of the ŷ-polarized intensityI y(kW ) ~see Fig. 4!. The re-
sult, shown in Fig. 3~b!, displays the anticipated strong ant
correlation.

e

r-
rn
re
e

FIG. 5. CorrelationC1 above threshold@see Eq.~9!# ~a! as a
function of kx andky and~b! calculated along the ringk5kc . The
parameters are the same as in Fig. 1, except forI s51.05I s

c . The
results were obtained after averaging over 3000 samples sepa
Dt50.5.
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